Preliminary communication

Synthetic studies on nephritogenic glycosides*. Synthesis of α -Glc- $(1\rightarrow 6)$ - β -Glc- $(1\rightarrow 6)$ - α -Glc- $(1\rightarrow Asn$

TOMOYA OGAWA**, SATORU NAKABAYASHI,

The Institute of Physical and Chemical Research, Wako-shi, Saitama, 351 (Japan) and SEIICHI SHIBATA

Clinical Research Institute, National Medical Center, 1-Toyama, Shinjuku-ku, Tokyo, 162 (Japan) (Received August 30th, 1980; accepted for publication, September 15th, 1980)

In 1969, Shibata et al.² isolated, from the glomerular basement-membrane of rats, a new glycopeptide having nephritogenic activity³. In 1980, from ¹³C-n.m.r. data and the results of a concanavalin A test, Shibata et al.⁴ proposed 1 as the structure of the glycopeptide.

$$\alpha$$
-Glc-(1-6)- β -Glc-(1-6)- α -Glc-(1-NHCO-peptide

$$\alpha$$
-Glc-(1—6)- β -Glc-(1—6)- α -Glc-(1—Asn

The proposed structure 1 is quite unusual, compared with the conventional glycan structure of glycopeptides⁵, in the following ways: (i) α -D-glucopyranose, instead of 2-acetamido-2-deoxy- β -D-glucose, is directly linked to the amide group of L-asparagine or L-glutamine of the peptide, and (ii) the "glycan" chain is composed of only three D-glucopyranosyl residues.

As part of the experiments directed toward the synthesis of 1, we report here a total synthesis of the smallest glycopeptide (2) in a regio- and stereo-controlled manner.

Treatment of β-chloride⁶ (3) with NaN₃ in hexamethylphosphoric triamide (HMPA) for 16 h at 20° gave a 79% yield of α-azide⁷ (4), m.p. 98–99.5°, $[\alpha]_D$ +174.2° (c 0.6, CHCl₃); R_F 0.49 (2:1 toluene–EtOAc); δ_H (CDCl₃): 5.58 (d, H-1, J 4 Hz). Subsequent Zemplén deacetylation of 4 afforded an 85% yield of 5: m.p. 181.5–182.5°, $[\alpha]_D$ +266.7° (c 0.69, H₂O); R_F 0.44 (25:6 CH₂Cl₂–MeOH); δ_H (D₂O): 5.51 (d, H-1,

^{*}Part 2 in the series "Synthetic Studies on Cell-surface Glycans". For Part 1, see ref. 1.

^{**}To whom enquiries should be addressed.

J 3.5 Hz); $\delta_{\rm C}$ (D₂O): 89.5 (C-1, $^{1}J_{\rm CH}$ 168.9 Hz) and 60.7 (C-6). Compound 5 was converted, in 3 steps, into 6 in 74.8% yield: (i) TrCl in pyridine during 16 h at 55°; (ii) Ac₂O-pyridine during 2 h at 20°; and (iii) 4:1 AcOH-H₂O during 6 h at 55°. Compound 6: [α]_D +155.2° (c 0.62, CHCl₃); $R_{\rm F}$ 0.25 in 2:1 toluene-EtOAc; $\delta_{\rm H}$ (CDCl₃): 5.62 (d, H-1, J 4 Hz). Glycosidation of 6 with bromide 8 in ClCH₂CH₂Cl, in the presence⁸ of HgBr₂ and powdered molecular sieve 4A, at 70-80°, afforded, in 72% yield, 10: m.p. 116-118°, [α]_D + 76.6° (c 0.53, CHCl₃); $\delta_{\rm H}$ (CDCl₃): 5.59 (d, H-1, J 4 Hz) and 4.55 (d, H-1', J 8 Hz). The formation of a (1→6)-β-glycosidic linkage in 10 without acetyl migration was confirmed by its ¹³C-n.m.r. spectrum, which showed the deshielded signal⁹ for C-6 at δ 67.2 and the signal for C-1' at δ 100.6, with ¹J_{CH} 164.8 Hz, as well as the signal for C-1 at ¹⁰ δ 86.1 with ¹J_{CH} 170.9 Hz.

Zemplén deacetylation of 10 afforded 11 $\{[\alpha]_D$ +88.2° (c 0.425, H_2O), R_F 0.42 in 2:1 CHCl₃-MeOH $\}$. Structure 11 was confirmed by the following ¹H- and ¹³C-n.m.r. data: δ_H (D₂O): 5.52 (d, H-1, J 3 Hz) and 4.49 (d, H-1', J 8 Hz); δ_C (D₂O): 103.0 (C-1', ¹ J_{CH} 162.1 Hz), 89.5 (C-1, ¹ J_{CH} 168.9 Hz), 68.7 (C-6), and 61.0 (C-6').

Tritylation of 11 and acetylation to give 12, and detritylation* of 12 with 40:8:1 AcOH $_2$ O $_2$ NaI during 2.5 h at 65° afforded 13 in an 83% overall yield from 10. Compound 13 had $[\alpha]_D$ +94.9° (c 0.725, CHCl $_3$); R_F 0.40 in 1:2 toluene $_2$ EtOAc; δ_H (CDCl $_3$): 5.59 (d, H-1. J 4 Hz) and 4.59 (d, H-1', J 8 Hz); δ_C (CDCl $_3$): 100.0 (C-1', J_{CH} 163.6 Hz) and 85.7 (C-1, J_{CH} 170.9 Hz). Glycosidation of 13 with 9 under Hanessian $_3$ Banoub conditions $_3$ 1 afforded a 74% yield of a mixture of 14 and 15 in the ratio of 3:2. The anomers were readily separated by flash column-chromatography $_3$ 1. Compound 14 had $[\alpha]_D$ +82.5° (c 0.93, CHCl $_3$); R_F 0.55 in 40:7 CHCl $_3$ $_3$ EtOAc; δ_C (CDCl $_3$): 100.4 (C-1', J_{CH} 161.1 Hz), 97.1 (C-1", J_{CH} 169.7 Hz), and 86.1 (C-1, J_{CH} 169.5 Hz). Compound 15 had $[\alpha]_D$ +61.3° (c 0.6, CHCl $_3$); R_F 0.49 in 40:7 CHCl $_3$ $_3$ EtOAc; δ_C (CDCl $_3$): 103.9 (C-1", J_{CH} 159.9 Hz), 100.4 (C-1', J_{CH} 162.4 Hz), and 86.1 (C-1, J_{CH} 171.2 Hz).

The α anomer 14 was deacetylated to 16: $[\alpha]_D$ +60.3° (c 0.76, CHCl₃); R_F 0.63 in 6:1 CHCl₃-MeOH. Benzylation of 16 afforded 17 (in 62.3% yield from 14). Compound 17 had $[\alpha]_D$ +58.0° (c 0.35, CHCl₃); R_F 0.45 in 10:1 toluene-EtOAc. Catalytic hydrogenation of the azide group in 17 in oxolane (THF)-Et₃N** in the presence of Lindlar catalyst¹³ gave a mixture of 18 and 19 (a single spot in t.l.c., R_F 0.41 in 10:1 CHCl₃-EtOAc) which was immediately treated with 20 and diethylphosphorocyanidate¹⁴ in HCONMe₂-Et₃N, to give a 75% yield of a mixture of 21 and its β anomer (at C-1) 22 in the ratio of 5:1. Compound 21 was purified by flash column-chromatography¹²: $[\alpha]_D$ +40° (c 0.98, CHCl₃); R_F 0.50 in 10:1 CHCl₃-EtOAc.

^{*}Hydrolysis of the trityl group of 12 was improved by the presence of NaI in aq. AcOH. In the absence of added NaI, the hydrolysis required 48 h, and gave rise to a mixture of 13 and its regio-isomer, due to acetyl migration.

^{**}In the absence of added Et_3N , 7 was hydrogenated to a mixture of α - and β -amine in the ratio of 1:1. Addition of Et_3N is crucial in obtaining α -amine as the major product.

$$\begin{array}{c} R^{2}OR^{2} \\ R^{2}O \\$$

Catalytic hydrogenolysis of 21 over 10% Pd–C in THF–EtOH– H_2O gave the target compound 2, $[\alpha]_D$ +72.8° (c 2.0, H_2O); R_F 0.35 in 2:4:1 BuOH–AcOH– H_2O . The structure of 2 was deduced from the synthetic sequence, and was confirmed by the following ¹H- and ¹³C-n.m.r. data: δ_H (D₂O): 5.58 (d, H-1, J 4 Hz), 4.93 (d, H-1", J 3.5 Hz), 4.50 (d, H-1", J 7.5 Hz), and 2.9–3.1 (m, COC H_2 CH); δ_C (D₂O): 102.7 (C-1", ¹ J_{CH} 162.4 Hz), 97.9 (C-1", ¹ J_{CH} 169.7 Hz), 76.7 (C-1, ¹ J_{CH} 166 Hz), 68.5 (C-6), 65.6 (C-6"), 60.5 (C-6"), 51.2 (COCH₂CH), and 35.1 (COCH₂CH).

The small discrepancy found between the ¹³C-n.m.r. data for natural 1 and for the synthetic product (2) may be attributable to the presence of a longer peptide moiety in 1.

ACKNOWLEDGMENTS

We thank Dr. H. Homma and his staff for the elemental analyses, and Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the n.m.r. spectra. We also thank Miss A. Sone for her technical assistance.

REFERENCES

1 T. Ogawa, K. Katano, and M. Matsui, Carbohydr. Res., 70 (1979) 37-46.

- 2 S. Shibata, Y. Miyakawa, T. Naruse, and T. Takuma, J. Immunol., 102 (1969) 593-601.
- 3 S. Shibata and T. Nagasawa, J. Immunol., 106 (1971) 1284-1294.
- 4 S. Shibata and H. Nakanishi, Carbohydr. Res., 81 (1980) 345-348; T. Takeda, Y. Sugiura, Y. Ogihara, and S. Shibata, Can. J. Chem., in press.
- 5 R. Kornfeld and S. Kornfeld, Annu. Rev. Biochem., 45 (1976) 217-237; J. Montreuil, Pure Appl. Chem., 42 (1975) 431-477.
- 6 W. Korytnyk and J. A. Mills, J. Chem. Soc., (1959) 636-649; R. U. Lemieux, Methods Carbohydr. Chem., 2 (1963) 224-225.
- 7 A. Bertho and D. Aures, Justus Liebigs Ann. Chem., 592 (1955) 54-69.
- 8 J.-C. Jacquinet and P. Sinaÿ, J. Chem. Soc., Perkin Trans. 1, (1979) 314-318.
- K. Yamasaki, H. Kohda, T. Kobayashi, R. Kasai, and O. Tanaka, Tetrahedron Lett., (1976) 1005-1008; K. Tori, T. Hirata, O. Koshitani, and T. Suga, ibid., (1976) 1311-1314; K. Tori, S. Seo, Y. Yoshimura, M. Nakamura, Y. Tomita, and H. Ishii, ibid., (1976) 4167-4170; S. Seo, Y. Tomita, K. Tori, and Y. Yoshimura, J. Am. Chem. Soc., 100 (1978) 3331-3339.
- K. Bock, I. Lundt, and C. Pedersen, Tetrahedron Lett., (1973) 1037-1040; K. Bock and C. Pedersen, J. Chem. Soc., Perkin Trans. 2, (1974) 293-297; Acta Chem. Scand. Ser. B, 29 (1975) 258-264.
- 11 S. Hanessian and J. Banoub, ACS Symp. Ser., 39 (1976) 36-64; Carbohydr. Res., 53 (1977) C13-C16.
- 12 W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 43 (1978) 2923-2925.
- 13 E. J. Corey, K. C. Nicolaou, R. D. Balanson, and Y. Machida, Synthesis, (1975) 590-591.
- S. Yamada, Y. Kasai, and T. Shioiri, *Tetrahedron Lett.*, (1973) 1595-1598; S. Yamada,
 N. Ikota, and T. Shioiri, *J. Am. Chem. Soc.*, 97 (1975) 7174-7175; T. Shioiri, Y. Yokoyama,
 Y. Kasai, and S. Yamada, *Tetrahedron*, 32 (1976) 2211-2217.